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Random Projection-Based Locality-Sensitive Hashing in a
Memristor Crossbar Array with Stochasticity for Sparse
Self-Attention-Based Transformer

Xinxin Wang, Ilia Valov, and Huanglong Li*

Self-attention mechanism is critically central to the state-of-the-art
transformer models. Because the standard full self-attention has quadratic
complexity with respect to the input’s length L, resulting in prohibitively large
memory for very long sequences, sparse self-attention enabled by random
projection (RP)-based locality-sensitive hashing (LSH) has recently been
proposed to reduce the complexity to O(L log L). However, in current digital
computing hardware with a von Neumann architecture, RP, which is
essentially a matrix multiplication operation, incurs unavoidable time and
energy-consuming data shuttling between off-chip memory and processing
units. In addition, it is known that digital computers simply cannot generate
provably random numbers. With the emerging analog memristive technology,
it is shown that it is feasible to harness the intrinsic device-to-device
variability in the memristor crossbar array for implementing the RP matrix and
perform RP-LSH computation in memory. On this basis, sequence prediction
tasks are performed with a sparse self-attention-based Transformer in a hybrid
software-hardware approach, achieving a testing accuracy over 70% with
much less computational complexity. By further harnessing the
cycle-to-cycle variability for multi-round hashing, 12% increase in the testing
accuracy is demonstrated. This work extends the range of applications of
memristor crossbar arrays to the state-of-the-art large language models
(LLMs).

1. Introduction

Attention is an integral part of the cognitive functions. It is a
means for animals and humans to quickly select high-value in-
formation from massive information with limited information
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processing resources.[1,2] Its biological
significance has inspired researchers to
introduce attention mechanisms into
artificial intelligence (AI) systems for
better performance. Currently, attention
mechanisms have become an impor-
tant part of the compelling large lan-
guage models (LLMs) in various tasks,
allowing handling long-range dependen-
cies between input sequence elements.

AI is now undergoing a paradigm
shift with the rise of the Transformer
LLMs[3] that have been seen as the
foundation models.[4] Unlike the con-
ventional recurrent[5,6] or convolutional[7]

neural networks, the Transformer archi-
tecture enables parallel processing by
solely using attention mechanisms,
dispersing with recurrence and con-
volutions entirely. The success of the
Transformer models reasserts the im-
portance of attention mechanisms.

With increasing real-world demands,
the Transformer models are being used
on increasingly long sequences.[8–10]

Unfortunately, the vanilla Transformer
model does not scale very well to long se-
quence lengths because of the quadratic

complexity with respect to the length L, rendering it prohibitively
memory-intensive and practically trainable only in large indus-
trial research laboratories. Specifically, the standard self-attention
used in the Transformer models is full self-attention that requires
the query vector to compare to all key vectors (query = key for
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self-attention).[3] It has been estimated that training such a model
on sequences of length 64 K even at a batch size of 1 and in 32-
bit floats would take 16 GB of memory,[11] which is impractical
and has hindered the use of the Transformer models for long
sequences. In this context, introducing sparsity in the attention
layers has become one of the main solutions to this problem.
Among these solutions is the one proposed by Kitaev et al.,[11]

using random projection (RP)-based locality-sensitive hashing
(LSH) where queries and keys are hashed into several buckets,
with similar items falling in the same bucket with high probabil-
ity. As such, the full self-attention pattern can be approximated
by only allowing attention within each bucket, reducing the com-
plexity to O(L log L).

In practice, however, models with sparse self-attention using
RP-LSH are quite slow,[12–15] despite their improved memory ef-
ficiency. The low speed is mainly attributed to the time taken by
hashing.[15] Optimizing the tradeoff between memory usage and
speed is of great importance for RP-LSH sparse self-attention if
we want it to be useful.

The low speed of RP-LSH sparse self-attention can largely be
understood from a hardware perspective. GPU, as the main en-
gine behind the state-of-the-art AI models, still suffers from the
so-called von Neumann bottleneck that frequent data shuttling
between off-chip memory and processing units is unavoidable
during information processing. RP is by nature a matrix mul-
tiplication operation. Matrix multiplication is a traditionally in-
tense mathematical operation for the conventional processors.
It requires high memory allocations, plus at least one multiply
and add per cell. In the specific case of RP, the dot products
of a d-dimensional feature vector (query) and k random vectors
generated from a certain distribution, respectively, are computed
and concatenated to obtain the hash value for this feature vector.
These steps are repeated for all feature vectors to obtain all their
hash values. Another issue arises from the abovementioned ran-
domness requirement. It is known that digital computers simply
cannot generate provably random numbers because they operate
deterministically.

In this work, we argue that these two main issues as the road-
block to practical use of RP-LSH sparse self-attention could be
addressed by the emerging nonvolatile memory or memristive
technology.[16,17] As their name suggests, memristors are resis-
tors with memory, predicted in 1971[18] and connected to phys-
ical devices in 2008.[19] Unlike electronic transistors, a major-
ity of memristor devices operate via electrically-driven nanoscale
ionic transport and atomic structural changes, thereby enabling
changes in resistance states which can maintain for a long time.
The suitability of memristors in solving the von Neumann bot-
tleneck issue has been widely reported in literatures where mem-
ristors used for storing synaptic weights are integrated in cross-
bar arrays to perform matrix-vector multiplication in the linear
weighted summation steps of neural network processing.[20,21]

The computations are performed in one step and at the sites
where data is stored, by making use of device physics and other
circuit laws,[22] i.e., Ohm’s law and Kirchhoff’s law that phys-
ically govern multiplication and summation, respectively. One
of the main challenges for memristor crossbars as neural net-
work accelerators executing linear weighted summation is the
intrinsic device-to-device (D2D) variation[23] that is rooted from
the stochastic nature of ionic movement. While the matrices of

synaptic connections in neural networks are typically fine-tuned
on given datasets, the matrices for RP-LSH are, by definition,
random ones, which can be naturally embodied in “non-ideal”
memristor crossbar arrays. In contrast to the conventional wis-
dom that D2D variation has to be mitigated, we here actively
leverage such randomness for RP. With such a memristor cross-
bar array, we perform sequence prediction tasks with a sparse
self-attention-based Transformer in a hybrid software-hardware
approach, achieving a testing accuracy over 70% with much less
computational complexity. The accuracy can be further improved
by performing multi-round RP-LSH, which takes advantage of
the cycle-to-cycle variability.

2. Results and Discussion

In order to reduce the complexity of attention computation,
RP-LSH is used to hash queries and keys for clustering simi-
lar vectors into the same bucket with high probability, thereby
approximating the full self-attention pattern by attention only
within each bucket, as shown in Figure 1. RP-LSH in memris-
tive crossbar arrays for interactive attention[24,25] has been re-
ported in previous works.[26,27] Unlike interactive attention, self-
attention is an attention mechanism relating different positions
of a single sequence in order to compute a representation of the
sequence.[3] RP is mathematically expressed by the dot product
of the input vector and a random normal vector. To implement
RP-LSH physically for sparse self-attention, we exploit the in-
trinsic randomness of our memristor crossbar array. The com-
ponent cells are made from stacking layers of V/HfO2/Ta2O5/Ta
(see Experimental Section), as schematically shown in Figure 2b.
Figure 2c,d shows the cross-sectional transmission electron mi-
croscopy (TEM) image of this device and the elemental distribu-
tion maps, respectively. The energy dispersive X-ray spectroscopy
(EDS) line scan reveals the distributions of compositional ele-
ments along the stacking direction, as shown in Figure S1 (Sup-
porting Information), from which the 10 nm thick Ta bottom elec-
trode, the oxide bilayer made of 8 nm thick Ta2O5 and 8 nm thick
HfO2, and the 10 nm thick top V electrode can be distinguished
according to the EDS signals.

Figure 3a shows the I–V curves (see Experimental Section) of
the device obtained from 20 cycles of set-reset resistive switching,
from which several noteworthy characteristics can be observed.
Unlike many reported devices whose repeatable switching behav-
ior can only be elicited after electroforming,[28–30] a one-time ap-
plication of significantly higher voltage or current than the ones
in the subsequent operating cycles, our device is electroforming-
free. From its pristine high-resistance state, the first positive volt-
age ramping from 0 to 5 V with respect to the Ta electrode is
performed. Before an observable increase in current occurs, the
current remains at an ultralow level about several pA (close to the
detection limit of the instrument), forming a prominent current
plateau in the voltage range between 0 and ≈2.5 V. Further in-
crease of the voltage till 5 V results in gradual current increase
from pA level to a few tens of nA. The programming current of
our device is among the lowest reported in the literature,[31–34]

which is desired for low-power memristor applications. It is also
worth mentioning that this device operates in a self-compliant
way that no external current limitation is needed. After reach-
ing the stop voltage (Vstop) of 5 V, the ramping direction is
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Figure 1. a) Architecture of a standard Transformer model that is based solely on attention mechanism, dispensing with recurrence and convolutions
entirely. b) Schematic diagram of the traditional full-attention mechanism. c) Schematic diagram of the sparse-attention mechanism based on RP-LSH.

reversed from 5 V back to 0. It is seen that the evolution of current
does not follow the same trajectory as that during positive volt-
age ramping. Instead, a clear counterclockwise hysteresis loop
emerges, which is a key fingerprint of the memristive effect[16,35]

and an indication of the switching of the device from a high-
resistance state (HRS) to a low-resistance state (LRS), or simply,

set switching. Interestingly, this loop is pinched at the voltage
≈2.5 V where the current increase becomes detectable during the
positive ramping phase. Below ≈2.5 V, the current evolves across
a plateau that looks overlapping (at the detection limit of our in-
strument) with the one formed in the positive ramping phase.
This biased hysteresis loop (not pinched at the origin of the

Figure 2. a) The optical image of the crossbar array of the size of 16× 16. b) Schematic structure of the Pt/V/HfO2/Ta2O5/Ta self-selective cell. c) The
cross-sectional TEM image of the device. d) EDS mapping images of the device.
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Figure 3. a) Self-selective analog resistive switching behavior observed in the V/HfO2/Ta2O5/Ta device. b) Four consecutive set processes with a stop
voltage of 4.5 V. c) Six consecutive reset processes with a stop voltage of −4 V. d) Schematic of the sneak path current in a 2× 2 crossbar array. The blue
and green lines indicate the current through the target cell and the sneak path current, respectively.

I–V coordinates) is reminiscent of those of the one-selector-one-
memristor (1S1R) cells, which are first commercialized by Intel
and Micron.[36] We name the voltage of 2.5 V in our case as the
hold voltage (Vh), following the naming convention for 1S1R.

In addition to the nonvolatile memristor, an access device in
series is normally required in each crosspoint to avoid unde-
sired current leakage in a large memristor crossbar array.[37] Two-
terminal selectors are superior in scalability compared to transis-
tors as access devices but currently still suffer from many man-
ufacturing challenges, such as materials selection[38] and device
performance optimization.[39] Future applications require even
higher-density memristor crossbar arrays like 3D vertical mem-
ristor crossbar arrays. In this case, a separate selector is not al-
lowed to be integrated with the memristor due to fundamental
reasons,[40,41] leaving memristors with built-in selectivity (self-
selective memristors) as the only choice.

As an example, the leakage suppression function of our self-
selective memristor in a two-by-two crossbar array is schemat-
ically shown in Figure 3d. Assuming that the unselected bitline
(BL) and wordline (WL) are floating and the selected cell is biased
to its operating voltage (read voltage, Vr, or write voltage, Vw), the
path of leakage current (sneak path) is labeled by the green curve.
This sneak path passes through three crosspoint cells. It is not
hard to see that sneak paths like this are the shortest in crossbar
arrays of any sizes. Leakage current through this sneak path can
be significantly suppressed if Vh is greater than one third of the
biasing voltage across the selected cell. This can be understood
as due to the fact that at least one cell on any sneak path is biased
in the current plateau region where the device is of significantly
high resistance (inaccessible state).

Our self-selective memristor exhibits bipolar switching char-
acteristics and bidirectional selectivity, as shown in Figure 3a. Af-
ter the first half cycle of up and down-ramping of the positive
voltage, a successive negative voltage ramping begins. It can be
seen that there is also a current plateau at the pA level in this
negative branch of the I–V curve. This plateau terminates at the
hold voltage of ≈−2 V, beyond which ramping up the negative
voltage results in apparent increase in current till a maximum
current of the order of 10 nA is reached at the stop voltage of
−5 V. Ramping down the voltage from −5 V gives rise to a coun-
terclockwise hysteresis |I|-V loop, which is pinched at the neg-
ative Vh of −2 V. The direction of this hysteresis loop indicates
that the device is switched from the LRS back to a HRS (reset
switching). The device then remains in a state of significantly
high resistance (inaccessible state) till the voltage drops to zero.
The set-reset switching I–V curve of the device is reproducible in
the successive cyclic voltage ramping measurements. The non-
volatile and analog switching properties of our device are also
investigated. As shown in Figure 3b,c, ramping the positive (neg-
ative) voltage back and forth leads to gradual increase (decrease)
in current at the stop voltage and, in the meantime, gradual rota-
tion of the |I|-V hysteresis loop counterclockwise about the point
of Vh, which indicate that the resistance state can be stabilized
even after voltage removal and it can also be continuously pro-
grammed. The I–V characteristics of five more devices obtained
by consecutively sweeping the positive and negative voltages are
shown in Figure S2 (Supporting Information), where it is seen
that all these devices exhibit similar analog resistive switching
characteristics. This analog-type of conductance is vital for en-
abling RP-LSH.[26,27]
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We have also measured the endurance and retention of these
devices. On applying cyclic voltage sweep with positive and nega-
tive stop voltages of 4 and −4 V, respectively, each of these device
can be reversibly switched back and forth between the HRS and
LRS for at least 105 cycles, as shown in Figure S3a (Supporting
Information). The C2C and D2D variations of the on/off ratio
are shown in Figure S4 (Supporting Information). For retention
performance measurements, the conductances of each device in
its HRS and LRS are read out at the voltage of 3 V. As shown
in Figure S3b (Supporting Information), both HRS and LRS can
be retained for over 104 s, indicating the non-volatility of resis-
tive switching. Figure S5 (Supporting Information) shows the re-
sistive switching I–V curve of the device after being reversibly
switched 200 times, which is still similar to that obtained in the
10th cycle.

To investigate the switching rate of the device, we have per-
formed several sets of pulse measurements, each using a 4.7 V
triangular stimulating pulse with a different width, preceded and
followed by 3 V square pulses with the widths of 1 μs to read
out the device conductances before and after stimulation, respec-
tively. It can be seen that only when the simulating pulse is longer
than 400 ns can the device be switched, as exhibited by the signifi-
cant difference between the readout currents shown in Figure S6
(Supporting Information). In other words, our device could be
switched by a 4.7 V triangular pulse in a relatively short timescale
of the order of 400 ns. Further increase in the switching speed is
possible by using stronger pulses.[42,43]

In order to clarify the nanoscale mechanism of resistive switch-
ing, we fabricate devices with different electrode areas and
perform additional electrical measurements of these devices.
Figure S7 (Supporting Information) shows the relationship be-
tween the conductance in different states and the area of the de-
vice. It is seen that there is no obvious dependence between the
conductance of device in its LRS and the area, indicating filamen-
tary conduction. On the other hand, the conductance of device in
the HRS and current-plateauing state is highly area-dependent,
indicating an interface-limited conduction mechanism, such as
Schottky thermionic emission. The bipolarity of resistive switch-
ing implies that electric field effect is the primary driving force. To
investigate the effect of heating, we have performed conductivity-
temperature (𝜎−T) measurements, using a hot plate to thermally
equilibrate the device at various temperatures in a cyclic man-
ner. The 𝜎−T curve shown in Figure S8 (Supporting Informa-
tion) does not exhibit any discernible hysteresis, indicating that
heating effect alone is unable to induce resistive switching. Nev-
ertheless, field effect and Joule heating effect are intertwined in
a complicated way, and it is unfounded to assert that resistive
switching is solely due to any one of these effects. The relation-
ship of these two effects may vary from synergetic to adversar-
ial, depending on the stage of switching as well as the materials
system.[39,44]

As discussed above, our self-selective memristors in a crossbar
array can block the sneak paths if Vh is greater than one third of
the biasing voltage across the selected cell. To determine a suit-
able read voltage Vr for our devices, one must also ensure that
the resistance state of our device is unaffected by Vr, or in other
words, Vr does not elicit resistive switching. To this end, we carry
out further quasi-DC voltage sweeping measurements with re-
duced stop voltages. We identify 3 V as suitable for reading be-

cause the I–V curves obtained by sweeping the voltage between 0
and 3 V back and forth are single-valued (Figure S9, Supporting
Information), indicating that no resistive switching occurs. Ac-
cordingly, Vr is set to 3 V in this study. As for writing operation,
we choose 4 V as the Vw.

While the most common application of memristive crossbar
arrays as the accelerators for computing weighted sums of neu-
ral activations (also dot-product operations) requires the mitiga-
tion of D2D variability,[25] RP-LSH function is instead enabled
by employing such a non-ideal factor.[28,29] The conductance map
(read at 3 V) of a 16× 2 self-selective memristive crossbar ar-
ray is shown in Figure 4a. Here, all devices in the array have
been subjected to one-time voltage sweep from 0 to −4 V and
back to 0, reset to their HRSs. This pre-treatment helps reduce
the current and thus the energy consumption in the subsequent
RP-LSH dot-product operations. It is seen from Figure 4c that
the conductances of these devices follow a lognormal distribu-
tion, with a mean value of 0.125 nS and a standard deviation of
0.008 μS. To perform RP, Indyk and Motwani,[45] and Dasgupta
and Gupta[46] have shown that the entries of the random matrix
can be independent random variables with the Gaussian distri-
bution. Intriguingly, the distribution of the row-wise differences
between the conductances of these two columns of memristors in
the array can be approximated by the Gaussian distribution with
a zero mean value, as shown in Figure 4e,f. Similar observations
are reported previously.[26,27]

With this physical random matrix, RP-LSH is conducted by
applying the input voltage vector to the row wires of the cross-
bar and comparing the output current from the adjacent column
wires. To obtain the hash, the current difference vector and its
opposite are concatenated, whose argmax is defined as the hash
value.[11,47] The main advantage of the hardware RP-LSH is that
the computation can be performed in just one step.

In addition to D2D variability, cycle-to-cycle variability is also
an intrinsic nature of memristors, which has been exploited for
nonconventional computing functionalities.[48–52] To investigate
such variability in our devices in the crossbar array, we perform
varying numbers of cycles of set-reset switching operations for
each device and measure the conductance difference statistics af-
ter the last reset operation has ended. As shown in Figure 4d,f and
Figure S10 (Supporting Information), though the conductance
differences still follow a Gaussian distribution irrespective of the
number of switching cycles, the standard deviation of the distri-
bution does depend on the cycle number. We will demonstrate
the potential benefits of harnessing this variability for sparse at-
tention later.

To evaluate the distance-preserving capability of our hardware-
implemented RP-LSH, we conduct four experimental trials in
which twenty 16-dimensional random vectors (Figure 5a) are
hashed into two buckets following the above-introduced steps. In
the nth trial, the memristive crossbar array has been pre-treated
by set-reset operations for n times. For comparison, four trials
of simulations of hashing these vectors are also carried out. The
entries of the simulated random matrix used in the nth trial fol-
low the conductance difference distribution in the experimental
memristive crossbar array. Figure 5b,c shows the classification re-
sults of the software- and hardware-based hashing, respectively.
It is shown that the experimental results are consistent with the
simulation results for 19 out of 20 vectors. In order to further
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Figure 4. The HRS conductance map of a 16× 2 memristor crossbar array after a) being reset for once and b) five set-reset switching operations. c,d)
Distribution of the device conductances corresponding to (a,b). e,f) Distribution of the conductance differences corresponding to (a,b).

Figure 5. a) Twenty 16-dimensional random input vectors. The classification results of the input vectors based on b) software and c) hardware hashing
in four trials, respectively. Statistics of the cosine similarity between the intra-bucket (light blue) and inter-bucket (dark blue) vectors obtained by d)
software-based RP-LSH and e) memristor-based RP-LSH.
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Figure 6. a) The input vectors corresponding to the 26 letters. b) Hashing bits (differential currents) for the input vectors generated by performing
RP-LSH within the memristor crossbar array. c) Cosine similarities between letter “a” and the other letters, where the stars represent misclassification.
The probability distributions of the predicted letters given the input sequences d) “xdcz” and e) “ydwbu”.

verify the effectiveness of memristor-based RP-LSH, we calcu-
late the cosine similarities between the input vectors hashed to
the same and different buckets, respectively. It is seen that the co-
sine similarities (Figure 5d,e) between vectors in the same buck-
ets are normally greater than those between vectors in different
buckets, with a few exceptions though. This indicates reasonably
satisfactory distance-preserving capabilities of both the software-
and hardware-based hashing.

Next, we will demonstrate the potential of memristor cross-
bar array for use in sparse self-attention-based Transformer. The
task we test is sequence prediction, in which the input string
should lead to a shift of each letter to its successive one, for ex-
ample, “xdcz→yeda”. The task is performed in a hybrid software-
hardware approach where the training is performed entirely in
software (see Experimental Section) while in the testing phase
the random matrix for RP-LSH is implemented in our memristor
crossbar array and the rest of the operations are still performed in
software. Here, each letter in an input string is embedded to a 64-
dimensional vector and they are packed together into an embed-
ding matrix X. With a single attention head, the Q, K and V matri-
ces are then computed by linear projection of X using 64× 16 pro-
jection matrices WQ, WK and WV (WQ = WK in our experiments),
respectively, and binarization subsequently using thresholding.
The obtained 16-dimensional binarized query vectors (also key
vectors) are shown in Figure 6a. In the testing phase, queries qi

and keys kj are mapped to their respective voltage vectors (ele-
ment “0”: 0 V; element “1”: 3 V) which are hashed in the mem-
ristor crossbar array into two buckets. Figure 6b shows the cur-
rent differences obtained according to the aforementioned ap-
proach and their grouping for all 26 letters. Letter “a” and the
other 16 letters are hashed to the same bucket. We calculate the
cosine distances between “a” and other 25 letters in either the
same or a different bucket, as shown in Figure 6c. It can be seen
that letters in the same (a different) bucket are normally more
similar (dissimilar) to “a” than letters in a different (the same)
bucket, as expected. A small number of letters similar to “a” are
still divided into a different bucket, including letters “d”, “l”, “n”
and “y”. This problem can be alleviated by performing multiple
rounds of hashing as will be discussed later. By allowing attention
only within each bucket to approximate the full-attention, we still
achieve 72% testing accuracy in predicting the output sequences
based on the inputs, regardless of the sequence length and the
order of letters. Two test cases are shown in Figure 6d,e.

With hashing, there is always a small probability that similar
items nevertheless fall in different buckets, leading to inaccu-
rate prediction. In Figure 6e, for example, this hybrid software-
hardware Transformer fails to correctly predict the successive let-
ter of “y” in string “ydwbu”. The prediction can become more ac-
curate as the number of hashes increases, each with a distinct
hash function.[11] To implement multi-round RP-LSH attention,

Adv. Electron. Mater. 2024, 10, 2300850 2300850 (7 of 10) © 2024 The Author(s). Advanced Electronic Materials published by Wiley-VCH GmbH
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Figure 7. a) Grouping of the input vectors after two-round hashing. b) Cosine similarities between the intra-bucket vectors after one-round (green part)
and two-round (light blue) hashing. c) The probability distributions of the predicted letters given the input sequence “ydwbu”. d) Comparison of the
prediction accuracies of the sparse-attention-based Transformer model based on single and two rounds of hashing in hardware.

we take advantage of the cycle-to-cycle variation of the conduc-
tance difference distribution in our memristor crossbar array, as
shown above in Figure 4b and Figure S7 (Supporting Informa-
tion). Specifically, we perform two-round hashing in the testing
phase (the settings of the training phase remain the same). After
cycling each memristor five times, the memristor crossbar array
is used to implement the new random matrix (Figure 4b) for the
second round of hashing. Sets that a query qi attends to obtained
by each RP-LSH are aggregated to form a union. We regard qi
collides with qj if qj is an element of the union. In this way, more
similar items are grouped into the same bucket after two-round
hashing than after single-round hashing, as shown in Figure 7b.
With two-round hashing, more correct predictions are obtained
(Figure 7c) and the accuracy is increased by 12% (Figure 7d).

3. Conclusion

To conclude, we have experimentally demonstrated the feasibility
of using the emerging memristor crossbar arrays as the physical
embodiments of RP matrices for LSH. Thanks to the in-memory
computing architecture for matrix-vector-multiplication and the
intrinsic D2D variability of the memristor crossbar array, RP-LSH
algorithm can be executed more locally so that data does not need
to be shipped from place to place, being desired for reducing en-
ergy consumption. With PR-LSH, we have further performed se-
quence prediction tasks with a sparse self-attention-based Trans-
former in a hybrid software-hardware approach, achieving a test-
ing accuracy over 70% with much less computational complexity.
To increase the collision probability of similar items, which is es-

sential for sparse self-attention, we have exploited the C2C vari-
ability of the memristor crossbar array for multi-round hashing,
resulting in further improvement in the testing accuracy. This
work presents a new paradigm for accelerating the state-of-the-
art Transformer LLMs.

4. Experimental Section
Device Fabrication: The memristor crossbar array with a 2 × 2 μm2

junction area was fabricated on a SiO2/Si wafer, patterned through pho-
tolithography and lift-off processes. The bottom Ta layer was deposited to
a thickness of 10 nm by 50 W direct current (DC) magnetron sputtering
under an argon pressure of 3 mTorr. Subsequently, an 8 nm Ta2O5 layer
and an 8 nm HfO2 layer were deposited through 50 W radio frequency (RF)
sputtering using the respective ceramic targets under an argon pressure
of 4 mTorr. Then, a 10 nm thick V top electrode was fabricated by 50 W DC
sputtering under an argon pressure of 4 mTorr. Finally, a 30 nm Pt protec-
tion layer was deposited by 50 W DC sputtering under an argon pressure
of 3 mTorr. All the films were deposited at room temperature.

Electrical Measurements: Cyclic quasi-DC voltage sweep with a sweep
rate of 0.2 V μs−1 and pulse measurements were performed by an Agi-
lent B1500A semiconductor analysis system. Using a high-frequency semi-
automatic probe station Summit 12000B-M and probe card configuration,
the DC and pulsed voltages were applied to the target bit line (BL), the
corresponding word line (WL) was grounded and other electrodes were
left floating. The switching matrix B2200 was used to select BLs and WLs.
All the measurements were performed at room temperature and under
ambient atmosphere.

Simulations: PyTorch 1.13.0 was used as the deep learning frame-
work. During the training process, the weights of the embedding layer,
the feed-forward layer, and the linear layer were updated to minimize the

Adv. Electron. Mater. 2024, 10, 2300850 2300850 (8 of 10) © 2024 The Author(s). Advanced Electronic Materials published by Wiley-VCH GmbH
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cross-entropy loss function using stochastic gradient descent. The learn-
ing rate was set to 0.001.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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